Với tóm tắt lý thuyết Toán 7 Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác hay nhất, chi tiết sách Chân trời sáng tạo sẽ giúp học sinh lớp 7 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 7.
Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác (Lý thuyết Toán lớp 7) - Chân trời sáng tạo
Lý thuyết Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác
1. Diện tích xung quanh của hình lăng trụ đứng
Quảng cáo
Diện tích xung quanh của hình lăng trụ đứng bằng chu vi đáy nhân với chiều cao.
Sxq = Cđáy . h
(Cđáy là chu vi đáy, h là chiều cao).
Chú ý: Diện tích toàn phần của hình lăng trụ đứng bằng tổng diện tích xung quanh và diện tích hai đáy.
Ví dụ: Tính diện tích xung quanh và diện tích toàn phần của hình lăng trụ đứng tam giác ABC.DEF sau:
Hướng dẫn giải
Quảng cáo
Diện tích xung quanh của hình lăng trụ đứng tam giác ABC.DEF là:
Sxq = Cđáy . h = (3 + 4 + 5 ) . 7 = 84 (cm2).
Diện tích một đáy của hình lăng trụ đứng tam giác ABC.DEF là:
Sđáy = (cm2)
Diện tích toàn phần của hình lăng trụ đứng tam giác ABC.DEF là:
84 + 2. 6 = 96 (cm2)
Vậy diện tích xung quanh và diện tích toàn phần của hình lăng trụ đứng tam giác ABC.DEF lần lượt là 84 cm2 và 96 cm2.
2. Thể tích của hình lăng trụ đứng
Thể tích của hình lăng trụ đứng bằng diện tích đáy nhân với chiều cao.
V = Sđáy . h
(Sđáy là diện tích đáy, h là chiều cao).
Ví dụ: Tính thể tích của hình lăng trụ đứng tứ giác có đáy là hình chữ nhật chiều dài là 3 cm, chiều rộng là 4 cm, và chiều cao của lăng trụ là 5,5 cm.
Quảng cáo
Hướng dẫn giải
Ta có đáy là hình chữ nhật nên diện tích đáy là:
Sđáy = 3 . 4 = 12 (cm2)
Thể tích của hình lăng trụ đứng tứ giác đó là:
V = Sđáy . h = 12 . 5,5 = 66 (cm3).
Vậy thể tích của hình lăng trụ đứng tứ giác đó là 66 cm3.
3. Diện tích xung quanh và thể tích của một số hình khối trong thực tiễn
Ví dụ: Một tấm lịch để bàn có dạng hình lăng trụ đứng tam giác. Tính diện tích xung quanh của tấm lịch.
Hướng dẫn giải
Quảng cáo
Diện tích xung quanh của tấm lịch để bàn là:
Sxq = Cđáy . h = (7 + 15 + 15) . 16 = 592 (cm2)
Vậy diện tích xung quanh của tấm lịch là 592 cm2.
Ví dụ: Để thi công một con dốc, người ta đúc một khối bê tông hình lăng trụ đứng tam giác có kích thước như hình sau. Hãy tính thể tích của khối bê tông.
Hướng dẫn giải
Diện tích đáy của hình lăng trụ đứng tam giác là:
Sđáy = = 84 (m2).
Thể tích của khối bê tông là:
V = Sđáy . h = 84 . 22 = 1 848 (m3).
Vậy thể tích của khối bê tông là 1 848 m3.
Bài tập Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác
Bài 1: Một chiếc hộp có dạng hình lăng trụ đứng tam giác với các kích thước như hình vẽ sau. Hãy tính diện tích xung quanh của chiếc hộp.
Hướng dẫn giải
Ta có chu vi đáy của hình lăng trụ đứng tam giác là:
Cđáy = 10 + 13 + 15 = 38 (cm)
Diện tích xung quanh của hình lăng trụ đứng tam giác là:
Sxq = Cđáy . h = 38 . 20 = 760 (cm2).
Vậy diện tích xung quanh của chiếc hộp là 760 cm2.
Bài 2: Lòng trong của một chiếc bể chứa nước có dạng hình lăng trụ đứng tứ giác, đáy là hình vuông có cạnh bằng 5 m. chiều cao của bể là 2,5 m. Hỏi bể chứa tối đa được bao nhiêu nước.
Hướng dẫn giải
Thể tích nước tối đa bể chứa được bằng thể tích của lòng trong của bể.
Lòng trong của bể hình lăng trụ đứng đáy là hình vuông nên ta có:
Sđáy = 5 . 5 = 25 (m2)
Thể tích lòng trong của bể là:
V = Sđáy . h = 25 . 2,5 = 62,5 (m3).
Vậy bể chứa tối đa được 62,5 m3 nước.
Học tốt Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác
Các bài học để học tốt Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán lớp 7 hay khác:
Giải sgk Toán 7 Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác
Giải sbt Toán 7 Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác
Xem thêm tóm tắt lý thuyết Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Tổng hợp lý thuyết Toán 7 Chương 3
Lý thuyết Toán 7 Bài 1: Các góc ở vị trí đặc biệt
Lý thuyết Toán 7 Bài 2: Tia phân giác
Lý thuyết Toán 7 Bài 3: Hai đường thẳng song song
Lý thuyết Toán 7 Bài 4: Định lí và chứng minh một định lí
Xem thêm các tài liệu học tốt lớp 7 hay khác:
- Giải sgk Toán 7 Chân trời sáng tạo
- Giải SBT Toán 7 Chân trời sáng tạo
- Giải lớp 7 Chân trời sáng tạo (các môn học)
- Giải lớp 7 Kết nối tri thức (các môn học)
- Giải lớp 7 Cánh diều (các môn học)
ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7
Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official
Tổng đài hỗ trợ đăng ký : 084 283 45 85
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:
Loạt bài Giải bài tập Toán lớp 7 của chúng tôi được biên soạn bám sát sgk Toán 7 Tập 1 & Tập 2 bộ sách Chân trời sáng tạo (NXB Giáo dục).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
Giải bài tập lớp 7 Chân trời sáng tạo khác